Novel ryanodine-binding properties in mammalian retina.
نویسندگان
چکیده
The ryanodine receptor (RyR)/Ca2+ release channel mobilizes Ca2+ from internal calcium stores to support a variety of neuronal functions. To investigate the presence of such a protein in mammalian retina, we applied ryanodine binding, PCR and antibodies against known RyRs. Surprisingly, ryanodine-binding properties of retinal endoplasmic reticulum-enriched membrane fraction were vastly different from those of skeletal and cardiac muscles ryanodine-binding proteins. In common with the skeletal and cardiac muscle, ryanodine bound with high-affinity to two or more types of binding site (Kd1 = 20.6 and Kd2 = 114 nM); binding was strongly stimulated by high concentrations of NaCl; it was inhibited by tetracaine and the protein appeared to possess an ATP-binding site. Unlike cardiac and skeletal muscle, RyRs in retina binding was Ca2+-independent; inhibited by caffeine and dantrolene; less sensitive to ruthenium red; and unaffected by La3+. Also, in retina, ryanodine rapidly associated to and dissociated from its binding sites. Furthermore, although the protein bound the ATP analog BzATP, retinal ryanodine binding was not stimulated by nucleotides. Immunostaining of bovine retinal sections with anti-RyR2 showed a strong staining of amacrine, horizontal and ganglion cells. Finally, using RT-PCR, the three known RyR isoforms were identified in retina. However, consistent with the novel binding properties, the peptide maps yielded by trypsin treatment and Western blotting demonstrate different patterns. Together, the results suggest that retina expresses a novel ryanodine-binding protein, likely to be a ryanodine receptor. Its presence in retina suggests that this protein might play a role in controlling intracellular Ca2+ concentration.
منابع مشابه
Retina expresses a novel variant of the ryanodine receptor.
Calcium released from intracellular stores via the ryanodine receptor (RyR) mediates a variety of signalling processes. We previously showed that retina expresses the three known types of RyR, but retinal membrane preparations exhibit unique characteristics such as Ca2+-independent [3H]ryanodine-binding and inhibition by caffeine. We have heretofore suggested that the major retinal RyR isoform ...
متن کاملRyanodine receptor isoforms of non-Mammalian skeletal muscle.
Whereas mammalian skeletal muscles express primarily a single isoform of ryanodine receptor (RyR) as the Ca2+ releasing channel, many non-mammalian vertebrate skeletal muscles express two isoforms in almost similar amount, alpha- and beta-RyR which are homologues of mammalian isoforms RyR1 and 3, respectively. alpha-RyR is believed to be directly involved in excitation-contraction coupling in s...
متن کاملIn silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties
Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal pepti...
متن کاملRegulation of mammalian ryanodine receptors.
Ryanodine receptors (RyRs) are large, high conductance Ca2+ channels that control the level of intracellular Ca2+ by releasing Ca2+ from an intracellular compartment, the sarco/endoplasmic reticulum. Mammalian tissues express 3 closely related ryanodine receptors (RyRs) known as skeletal muscle (RyR1), cardiac muscle (RyR2) and brain (RyR3). The RyRs are isolated as 30S protein complexes compri...
متن کاملMyoplasmic resting Ca2+ regulation by ryanodine receptors is under the control of a novel Ca2+-binding region of the receptor
Passive SR (sarcoplasmic reticulum) Ca2+ leak through the RyR (ryanodine receptor) plays a critical role in the mechanisms that regulate [Ca2+]rest (intracellular resting myoplasmic free Ca2+ concentration) in muscle. This process appears to be isoform-specific as expression of either RyR1 or RyR3 confers on myotubes different [Ca2+]rest. Using chimaeric RyR3-RyR1 receptors expressed in dyspedi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The international journal of biochemistry & cell biology
دوره 37 8 شماره
صفحات -
تاریخ انتشار 2005